SAFE HANDS & IIT-ian's PACE LEAP TEST# 14 (JEE) ANS KEY Dt. 07-01-2024

PHYSICS			CHEM	ISTRY	MATHS		
Q. NO.	[ANS]		Q. NO.	[ANS]	Q. NO.	[ANS]	
1	С		31	D	61	С	
2	Α		32	Α	62	В	
3	Α		33	D	63	Α	
4	C		34	В	64	С	
5	В		35	Α	65	В	
6	C		36	Α	66	С	
7	С		37	Α	67	С	
8	D		38	D	68	Α	
9	В		39	D	69	С	
10	Α		40	Α	70	Α	
11	В		41	Α	71	Α	
12	Α		42	С	72	Α	
13	Α		43	С	73	В	
14	С		44	С	74	D	
15	D		45	Α	75	С	
16	C		46	В	76	D	
17	D		47	С	77	В	
18	В		48	Α	78	С	
19	В		49	С	79	D	
20	D		50	В	80	Α	
21	2.82		51	8	81	1.5	
22	6.72		52	40	82	4.8	
23	2.5		53	3	83	2.25	
24	2		54	6	84	5	
25	0.81		55	8	85	1	

See Maths solutions on next page.....

SAFE HANDS & PACE

LT-14 (JEE) SOLUTIONS

_																
(61)	С	62)	b	63)	а	64)	С	77)	b	78)	С	79)	d	80)	а
(65)	b	66)	С	67)	С	68)	а	81)	1.5	82)	4.8	83)	2.25	84)	5
(69)	С	70)	а	71)	а	72)	а	85)	1	-		-		-	
,	73)	b	, 74)	d	75)	С	76)	d	,							
	,	-	,		,	-	,									

: HINTS AND SOLUTIONS :

Single Correct Answer Type

61 **(c)**

Equation of radical axis (i.e. common chord) of the two circles is

10x + 4y - a - b = 0 ...(i)

Centre of first circle is H(-4, -4)

Since second circle bisects the circumference of the first circle, therefore, centre H(-4, -4) of the first circle must lie on the common chord Eq. (i)

The equation of the line joining A(1,0) and B(3,4) is y = 2x - 2This cuts the circle $x^2 + y^2 = 4$ at Q(0, -2) and $P\left(\frac{8}{5}, \frac{6}{5}\right)$ We have $BQ = 3\sqrt{5}, QA = \sqrt{5}, BP = \frac{7}{\sqrt{5}}$ and $PA = \frac{3}{\sqrt{5}}$ $\therefore \alpha = \frac{BP}{PA} = \frac{7/\sqrt{5}}{3/\sqrt{5}} = \frac{7}{3}$ and $\beta = \frac{BQ}{QA} = \frac{3\sqrt{5}}{-\sqrt{5}} = -3$ $\therefore \alpha, \beta$ are roots of the equation $x^2 - x(\alpha + \beta) + \alpha\beta = 0$ i.e. $x^2 - x\left(\frac{7}{3} - 3\right) + \frac{7}{3}(-3) = 0$ or $3x^2 + 2x - 21 = 0$ 64 (c)

The centre of given circle is (1, 3) and radius is 2. So, *AB* is a diameter of the given circle has its mid point as (1, 3). The radius of the required circle is 3

Obviously, the slope of the tangent will be $-\left(\frac{1}{b/a}\right)$, i.e., $-\frac{a}{b}$ Hence, the equation of the tangent is $y = -\frac{a}{b}x$, i.e., by + ax = 066 (c) Equation of any circles through (0, 1) and (0, 6) is $x^2 + (y - 1)(y - 6) + \lambda x = 0$ $\Rightarrow x^2 + y^2 + \lambda x - 7y + 6 = 0$ If it touches *x*-axis, then $x^2 + \lambda x + 6 = 0$ should have equal roots $\Rightarrow \lambda^2 = 24 \Rightarrow \lambda = \pm \sqrt{24}$ Radius of these circles $= \sqrt{6 + \frac{49}{4} - 6} = \frac{7}{2}$ units That means we can draw two circles but radius of both circles is $\frac{7}{2}$ 67 (c) B(0, 1) $C(\cos\theta, \sin\theta)$

Let *C* (cos θ , sin θ); *H*(*h*, *k*) is the orthocenter of the $\triangle ABC$ Since circumcentre of the triangle is (0, 0), for orthocenter $h = 1 + \cos \theta$ and $k = 1 + \sin \theta$ Eliminating θ , $(x - 1)^2 + (y - 1)^2 = 1$ $\therefore x^2 + y^2 - 2x - 2y + 1 = 0$

68 **(a)**

The two normals are x = 1 and y = 2Their point of intersection (1, 2) is the centre of the required circle Radius $\frac{|3+8-6|}{5} = 1$: Required circle is $(x-1)^2 + (y-2)^2 = 1$ i.e. $x^2 + y^2 - 2x - 4y + 4 = 0$ 69 (c)

Substituting y = mx in the equation of circle we get $x^2 + m^2x^2 = ax + bmx + c = 0$ (y/x denotes the slope of the tangent from the origin on the circle)

Since line is touching the circle, we must have discriminant $\Rightarrow (a + bm)^{2} - 4c(1 + m^{2}) = 0$ $\Rightarrow a^{2} + b^{2}m^{2} + 2abm - 4c - 4cm^{2} = 0$ $\Rightarrow m^{2}(b^{2} - 4c) + 2abm + a^{2} - 4c = 0$ This equation has two roots m_{1} and m_{2} $\Rightarrow m_{1} + m_{2} = -\frac{2ab}{b^{2} - 4c} = \frac{2ab}{4c - b^{2}}$ 70 (a) Centres are (10,0) and (-15,0) and radii are $r_{1} = 6$; $r_{2} = 9$ Also d = 25 $r_{1} + r_{2} < d$ C_{1} r_{1} Q C_{2}

 \Rightarrow circles are neither intersecting nor touching

$$PQ = \sqrt{d^2 - (r_1 + r_2)^2}$$

= $\sqrt{625 - 225}$
= 20
71 (a)

If there are more than one rational points on the circumference of the circle $x^2 + y^2 - 2\pi x - 2ey + c = 0$ (as (π, e) is the centre), then *e* will be a rational multiple of π , which is not possible. Thus, the number of rational points on the circumference of the circle is at most one

Clearly, $A \equiv (3, -\sqrt{3})$ Centroid of triangle *ABC* is $\left(3, -\frac{1}{\sqrt{3}}\right)$, thus equation of incircle is $(x - 3)^2 + \left(y + \frac{1}{\sqrt{3}}\right)^2 = \frac{1}{3}$ $\Rightarrow x^2 + y^2 - 6x + \frac{2y}{\sqrt{3}} + 9 = 0$

Given circle is $(x - 2)^2 + y^2 = 4$ Centre is (2, 0) and radius = 2 Therefore, distance between (2, 0) and (5, 6) is $\sqrt{9 + 36} = 3\sqrt{5}$

Radius of the circle $CQ = \sqrt{2}$ Since $\angle QSR = 45^{\circ}$ Coordinates of Q and S are given by $(1 \pm \sqrt{2} \cos 45^{\circ}, -2 \pm \sqrt{2} \sin 45^{\circ})$ or Q(2, -1) and S(0, -3)Coordinates of P and R are given by $(1 \pm \sqrt{2} \cos 135^{\circ}, -2 \pm \sqrt{2} \sin 135^{\circ})$ or P(0, -1) and S(2, -3)75 (c) (45°)

$$C(0, 0)$$

$$45^{\circ}$$

$$45^{\circ}$$

$$y = mx + 1$$

$$P$$

$$R$$

Given circle is $x^2 + y^2 = 1$ C(0,0) and radius = 1 and chord is y = mx + 1 $\cos 45^\circ = \frac{CP}{CR}$ CP = perpendicular distance from (0,0) to chord y = mx + 1

Therefore, required distance, $TS = OT - SO = 12 - 4\sqrt{2}$ 77 **(b)**

The circle through points of intersection of the two circle $x^2 + y^2 - 6 = 0$ and $x^2 + y^2 - 6x + 8 = 0$ is $(x^2 + y^2 - 6) + \lambda(x^2 + y^2 - 6x + 8) = 0$

As it passes through (1, 1) $(1 + 1 - 6) + \lambda(1 + 1 - 6 + 8) = 0$ $\Rightarrow \lambda = 1$ \therefore The required circle is $2x^2 + 2y^2 - 6x + 2 = 0$ or $x^2 + y^2 - 3x + 1 = 0$ 79 (d)

The angle θ between the lines represented by $\sqrt{3} x^2 - 4xy + \sqrt{3}y^2 = 0$ is given by $\theta = \tan^{-1} \frac{\sqrt{h^2 - ab}}{|a + b|}$ $= \tan^{-1} \frac{2\sqrt{2^2 - 3}}{\sqrt{3} + \sqrt{3}} = \frac{1}{\sqrt{3}}$ Gives $\theta = \frac{\pi}{6}$ Hence, the shaded area $=\frac{\pi/6}{2\pi} \times \pi(2^2 - 1^2) = \frac{\pi}{4}$

Circles with centre (2, 0) and (-2, 0) each with radius 4 \Rightarrow *y*-axis is their common chord

 $\triangle ABC$ is equilateral. Hence, area of *ADBC* is $\frac{2\sqrt{3}}{4}$ (4)² = $8\sqrt{3}$

Integer Answer Type

81 (1.5)

The product of lengths of the perpendicular drawn from any point to the asymptotes of $\frac{x^2}{a^2} - \frac{y^2}{b^2}$ is $\frac{a^2b^2}{a^2 + b^2}$

The equation of hyperbola is
$$\frac{x^2}{2} - \frac{y^2}{1} = 1$$

 \Rightarrow The reciprocal of the product of lengths of perpendiculars

$$=\frac{1}{\frac{(2)(1)}{2+1}} = \frac{3}{2} = 1.5$$
82 (4.8)

Given equation

 $\Leftrightarrow (x-4)^2 + (y-3)^2 = 9$

 \Rightarrow Radius = 3

centre = (4,3)

Equation of chord of contact AB is

 $\Leftrightarrow x(0) + y(0) - 4(x + 0) - 3(y + 0) + 16 = 0$

$\Leftrightarrow 4x + 3y - 16 = 0$

|CM| = Perpendicular distance of C from AB

$$= \frac{|4(4) + 3(3) - 16|}{\sqrt{4^2 + 3^2}} = \frac{9}{5}$$
$$|BM| = \sqrt{BC^2 - CM^2}$$
$$= \sqrt{9 - \frac{81}{25}}$$
$$= \sqrt{\frac{225 - 81}{25}}$$
$$= \sqrt{\frac{144}{25}}$$
$$= \frac{12}{5}$$

 $\Rightarrow |AB| = 2|BM| = \frac{24}{5} = 4.8$

83 (2.25) f(k, 0) = 0 has repeated roots k = 1,1

 \Rightarrow The circle touches the x – axis at (1,0)

 $f(0,k) = 0 \text{ has roots} \frac{1}{2}, 2$

 \Rightarrow The circle passes through $\left(\frac{0,1}{2}\right)$ and (0,2).

Also C lies on line x = 1 \Rightarrow Centre C = $\left(\frac{1,5}{4}\right)$ \Rightarrow m = 1, n = $\frac{5}{4}$ \Rightarrow m + n = $\frac{9}{4}$ = 2.25 84 (5) $x^{2} + y^{2} - 2x + 4y = 0$ 84 $\Leftrightarrow (x-1)^2 + (y+2)^2 = 5$ \Rightarrow Centre C = (1, -2) and radius = $\sqrt{5}$ o C(1,-2) $|MN| = 2\sqrt{5}$ $|OM|^2 + |ON|^2 = 20$ $2|OM|^2 = 20$ $\Rightarrow |OM|^2 = 10$ \Rightarrow Area of $\triangle OMN = \frac{1}{2}|OM|^2 = 5$ 85 (1) Let $x + 5 = 14 \cos \theta$ and $y - 12 = 14 \sin \theta$ $\therefore x^2 + y^2 = (14\cos\theta - 5)^2 + (14\sin\theta + 12)^2$ $= 196 + 25 + 144 + 28 (12 \sin \theta - 5 \cos \theta)$ $= 365 + 28 (12 \sin \theta - 5 \cos \theta)$ $\therefore \sqrt{x^2 + y^2}\Big|_{\min} = \sqrt{365 - 28 \times 13} = \sqrt{365 - 364} = 1$