LEAP TEST\# 14 (JEE) ANS KEY Dt. 07-01-2024

PHYSICS	
Q. NO.	[ANS]
1	C
2	A
3	A
4	C
5	B
6	C
7	C
8	D
9	B
10	A
11	B
12	A
13	A
14	C
15	D
16	C
17	D
18	B
19	B
20	D
21	2.82
22	6.72
23	2.5
24	2
25	0.81

CHEMISTRY	
Q. NO.	[ANS]
31	D
32	A
33	D
34	B
35	A
36	A
37	A
38	D
39	D
40	A
41	A
42	C
43	C
44	C
45	A
46	B
47	C
48	A
49	C
50	B
51	8
52	40
53	3
54	6
55	8

MATHS	
Q. NO.	[ANS]
61	C
62	B
63	A
64	C
65	B
66	C
67	C
68	A
69	C
70	A
71	A
72	A
73	B
74	D
75	C
76	D
77	B
78	C
79	D
80	A
81	1.5
82	4.8
83	2.25
84	5
85	1

SAFE HANDS \& PACE

LT-14 (JEE) SOLUTIONS

61)	c	62)	b	63)	a	64)	c	77)	b	78)	c	79)	d	80)
65)	b	66)	C	67)	c	68)	a	81)	1.5	82)	4.8	83)	2.25	84)
69)	c	70)	a	71)	a	72)	a	85)	1					
73)	b	74)	d	75)	c	76)	d							

: HINTS AND SOLUTIONS :

Single Correct Answer Type

61 (c)

Equation of radical axis (i.e. common chord) of the two circles is
$10 x+4 y-a-b=0$
Centre of first circle is $H(-4,-4)$
Since second circle bisects the circumference of the first circle, therefore, centre $H(-4,-4)$ of the first circle must lie on the common chord Eq. (i)
$\therefore-40-16-a-b=0$
$\Rightarrow a+b=-56$
62
(b)

Let S be the midpoint of $P Q$
Since $\angle P A Q=\frac{\pi}{2}$, we get $A S=S P=S Q=\frac{1}{2}$
$\Rightarrow S$ lies on the quarter circle of radius $\frac{1}{2}$ with centre at A
Similarly S can also lie on quarter circle of radius $\frac{1}{2}$ with centre at B, C or D
\Rightarrow area $A=1-\frac{\pi}{4}$
63 (a)

The equation of the line joining $A(1,0)$ and $B(3,4)$ is $y=2 x-2$
This cuts the circle $x^{2}+y^{2}=4$ at $Q(0,-2)$ and $P\left(\frac{8}{5}, \frac{6}{5}\right)$
We have $B Q=3 \sqrt{5}, Q A=\sqrt{5}, B P=\frac{7}{\sqrt{5}}$ and $P A=\frac{3}{\sqrt{5}}$
$\therefore \alpha=\frac{B P}{P A}=\frac{7 / \sqrt{5}}{3 / \sqrt{5}}=\frac{7}{3}$
and $\beta=\frac{B Q}{2 A}=\frac{3 \sqrt{5}}{-\sqrt{5}}=-3$
$\therefore \alpha, \beta$ are roots of the equation $x^{2}-x(\alpha+\beta)+\alpha \beta=0$
i.e. $x^{2}-x\left(\frac{7}{3}-3\right)+\frac{7}{3}(-3)=0$
or $3 x^{2}+2 x-21=0$
64 (c)
The centre of given circle is $(1,3)$ and radius is 2 . So, $A B$ is a diameter of the given circle has its mid point as $(1,3)$. The radius of the required circle is 3

65
(b)

Obviously, the slope of the tangent will be $-\left(\frac{1}{b / a}\right)$, i.e., $-\frac{a}{b}$
Hence, the equation of the tangent is $y=-\frac{a}{b} x$, i.e., $b y+a x=0$

66
 (c)

Equation of any circles through $(0,1)$ and $(0,6)$ is
$x^{2}+(y-1)(y-6)+\lambda x=0$
$\Rightarrow x^{2}+y^{2}+\lambda x-7 y+6=0$
If it touches x-axis, then $x^{2}+\lambda x+6=0$ should have equal roots
$\Rightarrow \lambda^{2}=24 \Rightarrow \lambda= \pm \sqrt{24}$
Radius of these circles $=\sqrt{6+\frac{49}{4}-6}=\frac{7}{2}$ units
That means we can draw two circles but radius of both circles is $\frac{7}{2}$
67 (c)

$$
\left(\frac{\cos \theta+1}{3}, \frac{\sin \theta+1}{3}\right)
$$

Let $C(\cos \theta, \sin \theta) ; H(h, k)$ is the orthocenter of the $\triangle A B C$
Since circumcentre of the triangle is $(0,0)$, for orthocenter $h=1+\cos \theta$ and $k=1+\sin \theta$
Eliminating $\theta,(x-1)^{2}+(y-1)^{2}=1$
$\therefore x^{2}+y^{2}-2 x-2 y+1=0$
68 (a)
The two normals are $x=1$ and $y=2$
Their point of intersection $(1,2)$ is the centre of the required circle
Radius $\frac{|3+8-6|}{5}=1$
\therefore Required circle is
$(x-1)^{2}+(y-2)^{2}=1$
i.e. $x^{2}+y^{2}-2 x-4 y+4=0$

69 (c)
Substituting $y=m x$ in the equation of circle we get $x^{2}+m^{2} x^{2}=a x+b m x+c=0(y / x$ denotes the slope of the tangent from the origin on the circle)

Since line is touching the circle, we must have discriminant
$\Rightarrow(a+b m)^{2}-4 c\left(1+m^{2}\right)=0$
$\Rightarrow a^{2}+b^{2} m^{2}+2 a b m-4 c-4 c m^{2}=0$
$\Rightarrow m^{2}\left(b^{2}-4 c\right)+2 a b m+a^{2}-4 c=0$
This equation has two roots m_{1} and m_{2}
$\Rightarrow m_{1}+m_{2}=-\frac{2 a b}{b^{2}-4 c}=\frac{2 a b}{4 c-b^{2}}$

$70 \quad$ (a)

Centres are $(10,0)$ and $(-15,0)$
and radii are $r_{1}=6 ; r_{2}=9$
Also $d=25$
$r_{1}+r_{2}<d$

\Rightarrow circles are neither intersecting nor touching
$P Q=\sqrt{d^{2}-\left(r_{1}+r_{2}\right)^{2}}$
$=\sqrt{625-225}$
$=20$
71 (a)
If there are more than one rational points on the circumference of the circle $x^{2}+y^{2}-2 \pi x-2 e y+c=$ 0 (as (π, e) is the centre), then e will be a rational multiple of π, which is not possible. Thus, the number of rational points on the circumference of the circle is at most one

72 (a)

Clearly, $A \equiv(3,-\sqrt{3})$
Centroid of triangle $A B C$ is $\left(3,-\frac{1}{\sqrt{3}}\right)$, thus equation of incircle is
$(x-3)^{2}+\left(y+\frac{1}{\sqrt{3}}\right)^{2}=\frac{1}{3}$
$\Rightarrow x^{2}+y^{2}-6 x+\frac{2 y}{\sqrt{3}}+9=0$

73
(b)
$(5,6)$

Given circle is $(x-2)^{2}+y^{2}=4$
Centre is $(2,0)$ and radius $=2$
Therefore, distance between $(2,0)$ and $(5,6)$ is $\sqrt{9+36}=3 \sqrt{5}$
$\Rightarrow r_{1}=\frac{3 \sqrt{5}-2}{2}$
and $r_{2}=\frac{3 \sqrt{5}+2}{2}$
$=r_{1} r_{2}=\frac{41}{4}$
74 (d)

Radius of the circle $C Q=\sqrt{2}$
Since $\angle Q S R=45^{\circ}$
Coordinates of Q and S are given by $\left(1 \pm \sqrt{2} \cos 45^{\circ},-2 \pm \sqrt{2} \sin 45^{\circ}\right)$
or $\mathcal{Q}(2,-1)$ and $S(0,-3)$
Coordinates of P and R are given by $\left(1 \pm \sqrt{2} \cos 135^{\circ},-2 \pm \sqrt{2} \sin 135^{\circ}\right)$
or $P(0,-1)$ and $S(2,-3)$
75 (c)

Given circle is $x^{2}+y^{2}=1$
$C(0,0)$ and radius $=1$ and chord is $y=m x+1$
$\cos 45^{\circ}=\frac{C P}{C R}$
$C P=$ perpendicular distance from $(0,0)$ to chord $y=m x+1$
$C P=\frac{1}{\sqrt{m^{2}+1}}(C R=$ radius $=1)$
$\Rightarrow \cos 45^{\circ}=\frac{1 / \sqrt{m^{2}+1}}{1}$
$\Rightarrow \frac{1}{\sqrt{2}}=\frac{1}{\sqrt{m^{2}+1}}$
$\Rightarrow m^{2}+1=2$
$\Rightarrow m=\neq 1$
76
(d)

Given circle $(x-1)^{2}+(y+2)^{2}=16$
Its director circle is $(x-1)^{2}+(y+2)^{2}=32$
$\Rightarrow O S=4 \sqrt{2}$

Therefore, required distance, $T S=O T-S O=12-4 \sqrt{2}$
77
(b)

The circle through points of intersection of the two circle $x^{2}+y^{2}-6=0$ and $x^{2}+y^{2}-6 x+8=0$ is $\left(x^{2}+y^{2}-6\right)+\lambda\left(x^{2}+y^{2}-6 x+8\right)=0$
As it passes through $(1,1)$
$(1+1-6)+\lambda(1+1-6+8)=0$
$\Rightarrow \lambda=1$
\therefore The required circle is
$2 x^{2}+2 y^{2}-6 x+2=0$
or $x^{2}+y^{2}-3 x+1=0$
79
(d)

The angle θ between the lines represented by
$\sqrt{3} x^{2}-4 x y+\sqrt{3} y^{2}=0$ is given by
$\theta=\tan ^{-1} \frac{\sqrt{h^{2}-a b}}{|a+b|}$
$=\tan ^{-1} \frac{2 \sqrt{2^{2}-3}}{\sqrt{3}+\sqrt{3}}=\frac{1}{\sqrt{3}}$
Gives $\theta=\frac{\pi}{6}$

Hence, the shaded area $=\frac{\pi / 6}{2 \pi} \times \pi\left(2^{2}-1^{2}\right)=\frac{\pi}{4}$
80
(a)

Circles with centre $(2,0)$ and $(-2,0)$ each with radius 4
$\Rightarrow y$-axis is their common chord
$\triangle A B C$ is equilateral. Hence, area of $A D B C$ is $\frac{2 \cdot \sqrt{3}}{4}(4)^{2}=8 \sqrt{3}$

Integer Answer Type

$81 \quad$ (1.5)

The product of lengths of the perpendicular drawn from any point to the asymptotes of $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}$ is $\frac{a^{2} b^{2}}{a^{2}+b^{2}}$
The equation of hyperbola is $\frac{x^{2}}{2}-\frac{y^{2}}{1}=1$
\Rightarrow The reciprocal of the product of lengths of perpendiculars
$=\frac{1}{\frac{(2)(1)}{2+1}}=\frac{3}{2}=1.5$
82 (4.8)

Given equation
$\Leftrightarrow(\mathrm{x}-4)^{2}+(\mathrm{y}-3)^{2}=9$
\Rightarrow Radius $=3$
centre $=(4,3)$
Equation of chord of contact AB is
$\Leftrightarrow \mathrm{x}(0)+\mathrm{y}(0)-4(\mathrm{x}+0)-3(\mathrm{y}+0)+16=0$
$\Leftrightarrow 4 x+3 y-16=0$
$|C M|=$ Perpendicular distance of C from $A B$

$$
=\frac{|4(4)+3(3)-16|}{\sqrt{4^{2}+3^{2}}}=\frac{9}{5}
$$

$$
|\mathrm{BM}|=\sqrt{\mathrm{BC}^{2}-\mathrm{CM}^{2}}
$$

$$
=\sqrt{9-\frac{81}{25}}
$$

$$
=\sqrt{\frac{225-81}{25}}
$$

$$
=\sqrt{\frac{144}{25}}
$$

$$
=\frac{12}{5}
$$

$\Rightarrow|\mathrm{AB}|=2|\mathrm{BM}|=\frac{24}{5}=4.8$
$83 \quad$ (2.25)
$f(k, 0)=0$ has repeated roots $k=1,1$
\Rightarrow The circle touches the $\mathrm{x}-$ axis at $(1,0)$
$\mathrm{f}(0, \mathrm{k})=0$ has roots $\frac{1}{2}, 2$
\Rightarrow The circle passes through $\left(\frac{0,1}{2}\right)$ and (0,2).

$M\left(\frac{0,5}{4}\right)$
\Rightarrow C lies on line $y=\frac{5}{4}$

Also C lies on line $x=1$
\Rightarrow Centre C $=\left(\frac{1,5}{4}\right)$
$\Rightarrow \mathrm{m}=1, \mathrm{n}=\frac{5}{4}$
$\Rightarrow \mathrm{m}+\mathrm{n}=\frac{9}{4}=2.25$
84
(5)
$x^{2}+y^{2}-2 x+4 y=0$
$\Leftrightarrow(x-1)^{2}+(y+2)^{2}=5$
\Rightarrow Centre $C=(1,-2)$ and radius $=\sqrt{5}$

$|\mathrm{MN}|=2 \sqrt{5}$
$|\mathrm{OM}|^{2}+|\mathrm{ON}|^{2}=20$
$2|O M|^{2}=20$
$\Rightarrow|O M|^{2}=10$
\Rightarrow Area of $\triangle \mathrm{OMN}=\frac{1}{2}|\mathrm{OM}|^{2}=5$
$85 \quad$ (1)
Let $x+5=14 \cos \theta$ and $y-12=14 \sin \theta$
$\therefore x^{2}+y^{2}=(14 \cos \theta-5)^{2}+(14 \sin \theta+12)^{2}$
$=196+25+144+28(12 \sin \theta-5 \cos \theta)$
$=365+28(12 \sin \theta-5 \cos \theta)$
$\left.\therefore \sqrt{x^{2}+y^{2}}\right|_{\text {min }}=\sqrt{365-28 \times 13}=\sqrt{365-364}=1$

